# Chp 6. EQUITY VALUATION **VALUATION METHODS**

#### Victor Barros, CFA

Equity Research – Master in Finance 2020/2021





Master in Finance Ranking 2020



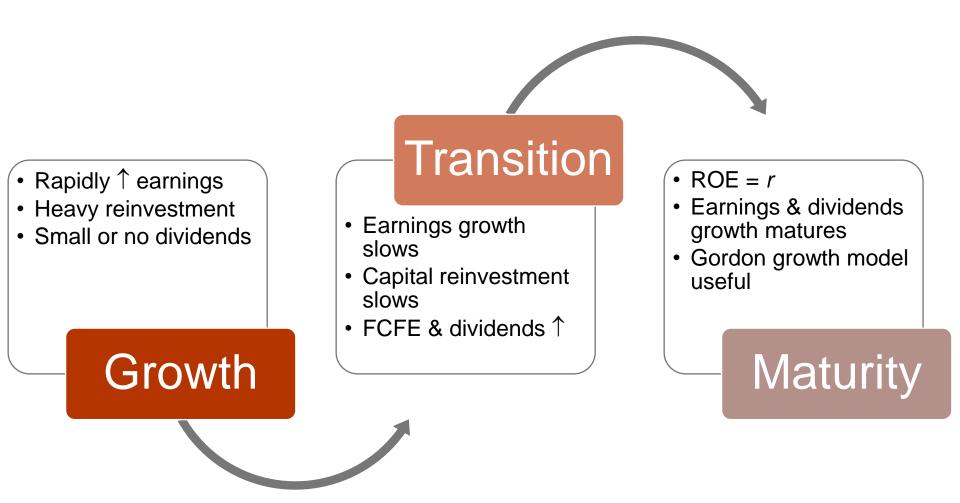
## CONTENT

**Valuation Methods** 

**1.Dividend Discount Model (DDM)** 

2.Discounted Cash Flow Models (DCF)

**3.Market-Based Valuation** 


**4.Residual Income Valuation** 

5. Moving from EV to P

### CHOICE OF DISCOUNTED CASH FLOW MODELS

| Dividend<br>Discount Models | <ul> <li>History of dividend payments</li> <li>Dividends related to earnings</li> <li>Noncontrolling perspective</li> </ul>  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                                                                              |
| Free Cash Flow<br>Models    | <ul> <li>Small or zero dividends</li> <li>Positive cash flow related to earnings</li> <li>Controlling perspective</li> </ul> |
|                             |                                                                                                                              |
| Residual Income<br>Models   | <ul> <li>Small or zero dividends</li> <li>Negative free cash flows</li> <li>High-quality accounting disclosures</li> </ul>   |

### CHOICE OF DISCOUNTED CASH FLOW MODELS



# FRAMEWORK FOR DCF-BASED VALUATION

| Method                                                            | Measure<br>of CF                                             | Discount<br>Factor | Assessment                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------|--------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WACC method<br>or<br>Enterprise<br>Discounted Cash<br>Flow (FCFF) | FCFF                                                         | WACC               | Works best for projects, business units, and<br>companies that manage their <b>capital</b><br><b>structure to a target level</b> . Will obtain the<br>value of the operating assets (EV). Add on<br>the value of nonoperation assets to arrive at<br>firm value. |
| Flow to Equity<br>or<br>Equity cash flow<br>(FCFE)                | FCFE Levered<br>cost of<br>equity                            |                    | Difficult to implement correctly because<br>capital structure is embedded within the cash<br>flow. <b>Best used when valuing financial</b><br><b>institutions</b> . Will yield the value of equity in<br>a business                                              |
| Residual Income                                                   | Residual Income Economic Levered<br>profit cost of<br>equity |                    | Explicitly highlights when a company creates value. Useful for firms without free cash flows and when cash flows are unpredictable.                                                                                                                              |
| Adjusted Present<br>Value (APV)                                   | justed Present FCFF Unlevered                                |                    | Highlights changing capital structure more<br>easily than WACC-based models. Works<br>best for companies that <b>maintain the</b><br><b>amount of debt</b>                                                                                                       |



### ISSUES USING THE GORDON GROWTH MODEL

#### Strengths

- Simple and applicable to stable, mature firms
- Can be applied to entire markets
- g can be estimated using macro data (real GDP +  $\pi$ )
- Can be applied to firms that repurchase stock

#### Limitations

- Not applicable to non-dividendpaying firms
- g must be constant
- Stock value is very sensitive to r-g
- Most firms have nonconstant growth in dividends (multistage models?)

### ISSUES USING THE GORDON GROWTH MODEL

#### **Most Appropriate**

- Minority shareholders of companies with a stable dividend policy
- Companies with:
  - Stable growth
  - Stable leverage
  - Dividend growth similar to FCFE growth
  - Beta of around 0.8 and stable over time

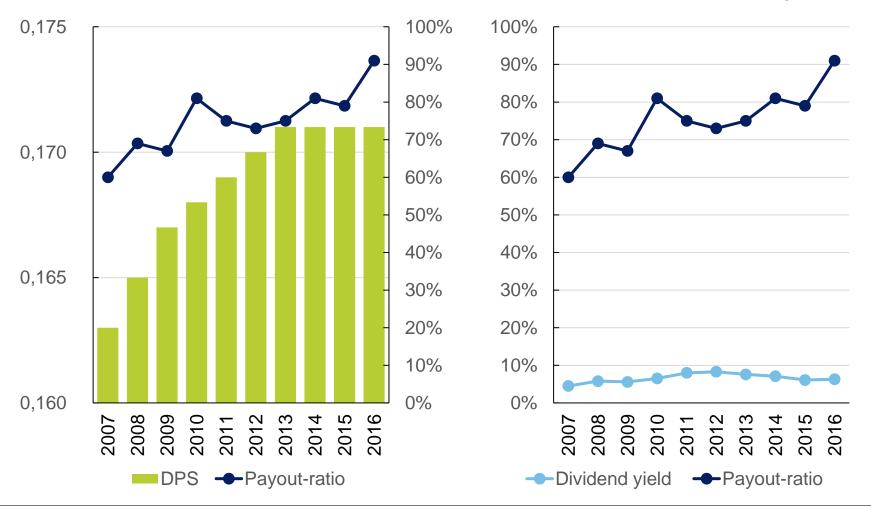
#### Least Appropriate

- Ineffective with takeovers, as there are no guarantees that the acquirer will keep the dividend policy
- Changes (even small) in management may result in an irregular dividend policy
- Sensitivity to agency conflicts (corporate governance)

Stock's expected rate of return

$$r = \frac{D_1}{P_0} + g$$

Two-Stage DDM with different growth rates (S-short period; L-long period)

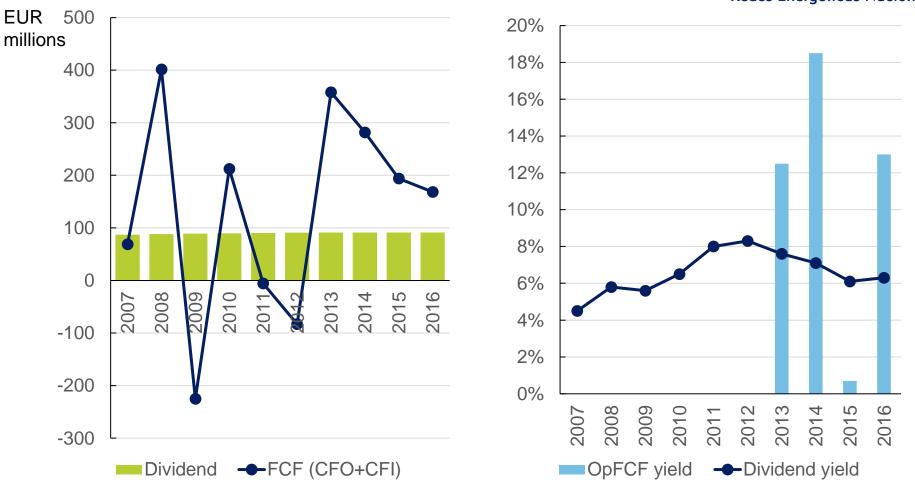

$$V_0 = \sum_{t=1}^n \frac{D_0 (1+g_S)^t}{(1+r)^t} + \frac{D_0 (1+g_S)^n (1+g_L)}{(1+r)^n (r-g_L)}$$

H-Model (declinig dividend in Stage 1)  $V_0 = \frac{D_0(1 + g_L) + D_0H(g_S - g_L)}{r - g_L}, H = (high growth period/2)$ 

#### **REN – Redes Energéticas Nacionais SGPS SA**

**Redes Energéticas Nacionais** 

REN




Victor Barros | ISEG - U Lisbon

#### **REN – Redes Energéticas Nacionais SGPS SA**

Redes Energéticas Nacionais

REN



### LafargeHolcim, Ltd

### LafargeHolcim

- LHN has a clear policy of paying dividends for shareholders. It has targeted to reach a <u>payout ratio of 50%</u> of its net income attributable to its shareholders in the coming years. Thus, dividends are linked to company's earnings.
- The company <u>will also pay in dividends the excess cash</u> of cash flow from its operations.

| Three Stage DDM assumptions              |       |                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Three Stage Dividend Discount Model      |       |                                                                                                                                                                                                                                                                                                                                              |
| High Growth Period                       |       |                                                                                                                                                                                                                                                                                                                                              |
| Cost of Equity (Ke)                      | 8.11% | Equal to Ke used in the DCF method.                                                                                                                                                                                                                                                                                                          |
| Expected growth rate (G1)                | 3.27% | Computed using the following formula: ROE*(1-Payout Ratio), in which the Payout Ratio is 30% as initially assumed for the 2016F year.                                                                                                                                                                                                        |
| Transition Stage (H)                     | 4     | We assume a 4-year transition stage.                                                                                                                                                                                                                                                                                                         |
| Stage Growth Period                      |       |                                                                                                                                                                                                                                                                                                                                              |
| Cost of Equity (Ke)                      | 8.11% | Equal to Ke used in the DCF method.                                                                                                                                                                                                                                                                                                          |
| Growth rate of economy (G <sub>2</sub> ) | 2.31% | According to Damodaran, we use as a proxy the economy GDP growth<br>rate. Because LHN has business at global level, we choose the world<br>GDP growth rate forecasted by the IMF for 2021F. Moreover, we apply<br>a 40% discount over that rate to update for current market conditions<br>enabling us to achieve a more conservative value. |

### LafargeHolcim, Ltd

### LafargeHolcim

| Cash Dividend           | 468<br>790   | 879<br>941   | 615            | 664            | 646            | 770            |
|-------------------------|--------------|--------------|----------------|----------------|----------------|----------------|
| Net Income<br>Dividends | 1.560<br>468 | 2.198<br>879 | 2.316<br>1.158 | 2.374<br>1.306 | 2.385<br>1.431 | 2.439<br>1.585 |
| Million CHF             | 2016F        | 2017F        | 2018F          | 2019F          | 2020F          | 2021F          |

| Three St       | Three Stage DDM price target |                |       |              |  |  |  |  |
|----------------|------------------------------|----------------|-------|--------------|--|--|--|--|
| Year           | EPS                          | DPS            | Ke    | PV Dividends |  |  |  |  |
| 2016F          | 2.57                         | 2.07           | 8.11% | 1.92         |  |  |  |  |
| 2017F          | 3.62                         | 3.00           | 8.11% | 2.57         |  |  |  |  |
| 2018F          | 3.82                         | 2.92           | 8.11% | 2.31         |  |  |  |  |
| 2019F          | 3.91                         | 3.25           | 8.11% | 2.38         |  |  |  |  |
| 2020F          | 3.93                         | 3.42           | 8.11% | 2.32         |  |  |  |  |
| 2021F          | 4.02                         | 3.88           | 8.11% | 2.43         |  |  |  |  |
| Sum PV Divid   | Sum PV Dividends             |                |       |              |  |  |  |  |
| Terminal Price | Terminal Price               |                |       |              |  |  |  |  |
| PV Terminal P  | rice                         |                |       | 44.49        |  |  |  |  |
| PV             | Dividends + P                | V Terminal Pri | ce    | 58.41        |  |  |  |  |

### Calculate $P_0$ ?

(begining 2016)

Total shares = 606.9m



#### Free Cash Flow to the Firm (FCFF) vs Free Cash Flow to Equity (FCFE)

Theoretically they should yield the same estimates. Nevertheless, often, they do not reflect identical assumptions.

#### Stable capital structure:

• FCFE is more simpler and direct to estimate the price target

#### Levered company with negative FCFE:

• FCFF may be easier and is more appropriate

#### Levered company with changing capital structure (deleveraging?):

- FCFF growth is more linked with company's fundamentals
- $r_e$  is more sensitive to changes in the capital structure than WACC

Free Cash Flow to the Firm

 $FCFF = +EBIT \times (1 - t)$ 

+Non Cash Charges

-Net increase in Working Capital

-Capital Expenditures (CapEx)

+Net Income +Interest × (1 – t) +Depreciations & Amortizations

Non-Cash Charges (not only Depreciations & Amortizations)

#### **Other Non-Cash Adjustments**

| Amortization                | <ul> <li>Added back</li> </ul>      |  |
|-----------------------------|-------------------------------------|--|
| Restructuring Expense       | <ul> <li>Added back</li> </ul>      |  |
| Restructuring Income        | <ul> <li>Subtracted out</li> </ul>  |  |
| Capital Gains               | <ul> <li>Subtracted out</li> </ul>  |  |
| Capital Losses              | Added back                          |  |
| Employee Option<br>Exercise | Added back                          |  |
| Deferred Taxes              | Added back?                         |  |
| Tax Asset                   | <ul> <li>Subtracted out?</li> </ul> |  |

#### **Free Cash Flow to Equity**

FCFE = +FCFF

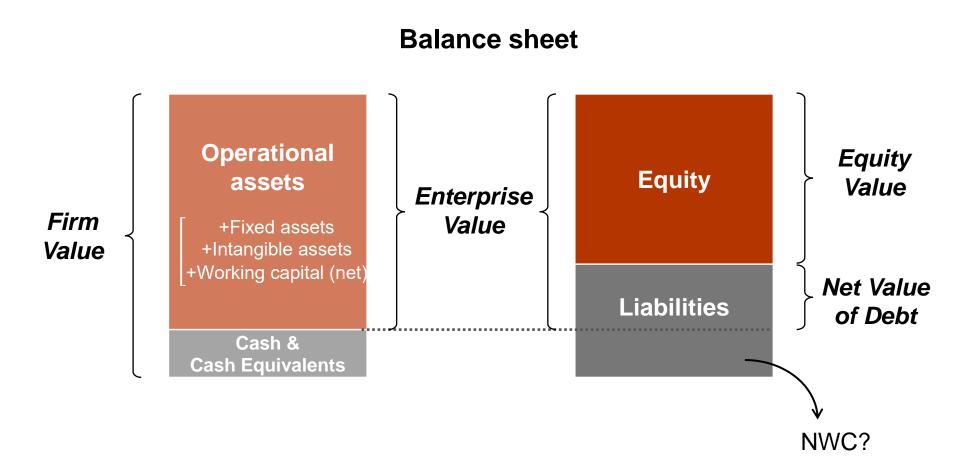
-Interest expense  $\times (1 - t)$ 

+Net Borrowing

Preferred Dividend

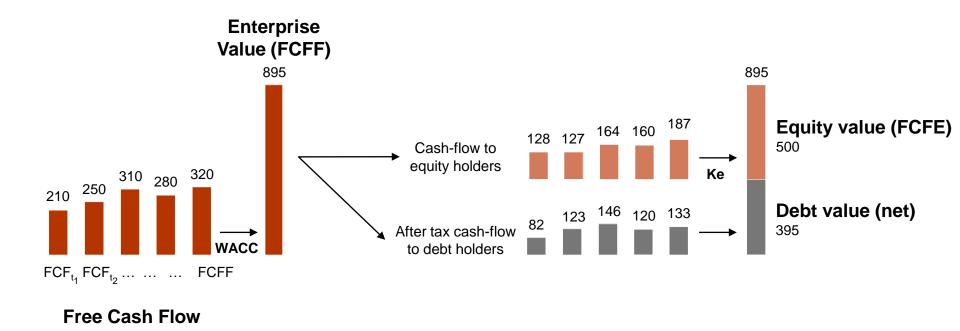
FCFE = +Net Income

+ Non Cash Charges


-Net increase in Working Capital

-Capital Expenditures (CapEx)

+Net Borrowing


- Preferred Dividend

Net Borrowing = New debt borrowing – Debt repayment



Net Value of Debt =

Short-Term Debt + Long-Term Debt + Pension Obligations + Preferred shares + Minority Interests – Cash & Cash Equivalents ± Others



The net value of debt equals the discounted after-tax cash flow to debt holders plus the present value of interest tax shield, preferred shares, other obligations (pension plans) and minority interests, and minus cash and cash equivalents.

Source: Koller at. al. (2010), adjusted

#### **Enterprise Value (EV)**

$$EV_0 = \sum_{t=1}^{\infty} \frac{FCFF_t}{(1 + WACC)^t}$$

$$EV_0 = \frac{FCFF_1}{WACC - g} = \frac{FCFF_0(1 + g)}{WACC - g}$$

#### Two-Stage FCFF Model

$$EV_0 = \sum_{t=1}^{n} \frac{FCFF_t}{(1 + WACC)^t} + \frac{FCFF_{n+1}}{(WACC - g)} \frac{1}{(1 + WACC)^n}$$

#### Equity Value (EV)

Equity Value = Enterprise Value – Net Market Value of Debt

Equity Value = 
$$\sum_{t=1}^{\infty} \frac{\text{FCFE}_t}{(1+r)^t}$$

Constant-growth FCFE Model

Equity Value = 
$$\frac{\text{FCFE}_1}{r-g} = \frac{\text{FCFE}_0(1+g)}{r-g}$$

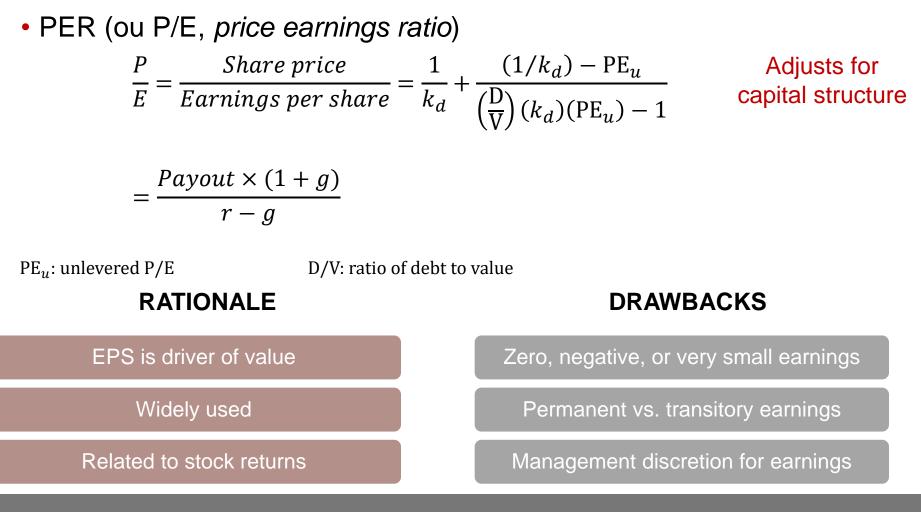
Two-Stage FCFE Model

Equity Value = 
$$\sum_{t=1}^{n} \frac{\text{FCFE}_{t}}{(1+r)^{t}} + \frac{\text{FCFE}_{n+1}}{(r-g)} \frac{1}{(1+r)^{n}}$$



Price-to-earnings (P/E)

Price Multiples Price-to-book (P/B) Price-to-sales (P/S)


Price-to-cash-flow (P/CF)

Price-to-dividends (P/D)

Enterprise Value Multiples EV/FCFF Momentum Indicators **EV/EBITDA EV/Sales** 

> Cognitive - Regret-aversion - Overconfidence **Biases**

### **Price-to-Equity**



#### **Price-to-Book**

# • P/B (price to book ratio) $\frac{P}{B} = \frac{Share \ price}{Book \ Value} = \frac{ROE \times Payout \times (1+g)}{r-g}$

#### RATIONALE

Book Value Is Usually Positive

More Stable than EPS

Appropriate for Financial Firms

Appropriate for Firms that Will Terminate

#### DRAWBACKS

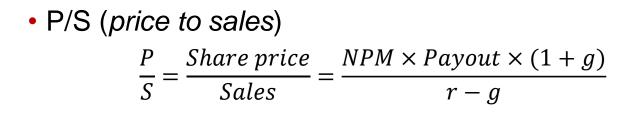
Does Not Recognize Nonphysical Assets

Misleading when Asset Levels Vary

Can Be Misleading Due to Accounting Practices

Less Useful when Asset Age Differs

Can Be Distorted Historically by Repurchases


#### **Price-to-Book**

Peer group for Iberian banks (Portugal and Spain)

(sort by PBV)

| Name                         | Market Cap. | P/E     | PBV        | ROE   |
|------------------------------|-------------|---------|------------|-------|
| Name                         | 18HY (€ bn) | 18E     | <b>18E</b> | 18E   |
| Bankinter SA                 | 7.50        | 13.18x  | 1.517x     | 12.0% |
| Caixabank SA                 | 22.17       | 10.54x  | 0.914x     | 8.7%  |
| Banco Santander SA           | 74.10       | 9.00x   | 0.731x     | 8.4%  |
| BBVA SA                      | 40.50       | 6.99x   | 0.690x     | 10.0% |
| Bankia SA                    | 9.89        | 10.56x  | 0.664x     | 6.3%  |
| Banco Comercial Portugues SA | 3.85        | 11.79x  | 0.622x     | 5.8%  |
| Banco de Sabadell SA         | 8.08        | 14.24x  | 0.549x     | 3.3%  |
| Liberbank SA                 | 1.29        | 11.11x  | 0.483x     | 4.7%  |
| Unicaja Banco SA             | 2.35        | 10.92x  | 0.448x     | 4.1%  |
|                              |             |         |            |       |
| Mean                         | 18.86       | 10.927x | 0.735x     | 7.0%  |
| Median                       | 8.08        | 10.920x | 0.664x     | 6.3%  |
|                              |             |         |            |       |

#### **Price-to-Sales**



#### RATIONALE

Sales Less Easily Manipulated

Sales Are Always Positive

P/S Appropriate For Mature, Cyclical, & Distressed Firms

P/S More Stable Than P/E

#### DRAWBACKS

Sales ≠ Earnings & Cash Flow

Numerator & Denominator Not Consistent

P/S Does Not Reflect Cost Differences

P/S Can Be Misleading Due to Accounting Practices

Victor Barros | ISEG - U Lisbon

#### **Price-to-Cash Flows**

### • PCF (price to cash flow)

 $\frac{P}{CF} = \frac{Share \ price}{Cash \ flow \ per \ share}$ 

| CF     | <ul> <li>Earnings + Depreciation + Amortization + Depletion</li> </ul> |
|--------|------------------------------------------------------------------------|
| CFO    | <ul> <li>From statement of cash flows</li> </ul>                       |
| FCFE   | Most valid but volatile                                                |
| EBITDA | <ul> <li>Best used with enterprise value</li> </ul>                    |

#### RATIONALE

Cash Flow Less Easily Manipulated

#### Ratio More Stable Than P/E

Ratio Addresses Quality of Earnings Issue with P/E

#### DRAWBACKS

Cash Flow Can Be Distorted

FCFE More Volatile and More Frequently Negative

Cash Flow Increasingly Managed by Firms

Victor Barros | ISEG - U Lisbon

#### **Inverse Price Ratios**

| Price Ratio               | Inverse Price Ratio   |
|---------------------------|-----------------------|
| Price-to-earnings (P/E)   | Earnings yield (E/P)  |
| Price-to-book (P/B)       | Book-to-market (B/P)  |
| Price-to-sales (P/S)      | Sales-to-price (S/P)  |
| Price-to-cash-flow (P/CF) | Cash flow yield (C/P) |
| Price-to-dividends (P/D)  | Dividend yield (D/P)  |

#### **EV Multiples**

### • EV / EBITDA

 $\frac{EV}{EBITDA} = \frac{MV_{FCFE} + MV_{PF} + (MV_D - Cash)}{EBITDA}$ 

PF: preferred shares D: debt

#### RATIONALE

Useful for comparing firms of different leverage Useful for comparing firms of different capital utilization

Usually positive

#### DRAWBACKS

Exaggerates cash flow

FCFF more strongly grounded

#### **EV Multiples**

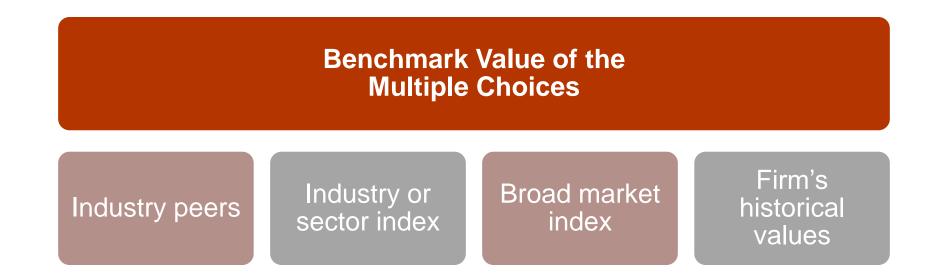
# • EV / EBITDA $\frac{EV}{EBITDA} = \frac{MV_{FCFE} + MV_{PF} + (MV_D - Cash)}{EBITDA}$

PF: preferred shares

D: debt

• EV / SALES  $\frac{EV}{SALES} = \frac{MV_{FCFE} + MV_{PF} + (MV_D - Cash)}{SALES}$ 

### **EV Multiples**


### • EV / EBITA

(Earnings Before Interest, Taxes and Amortization of Acquired intangibles)

Focus on key value drivers (NOPLAT / ROIC / WACC / g) to compare industry multiples

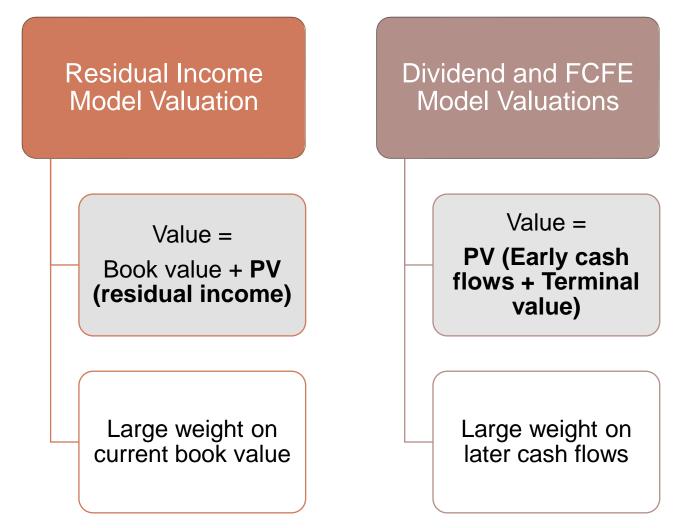
 $NOPLAT \approx EBITA(1-T)$ 

$$\frac{EV}{EBITA} = \frac{(1-T)\left(1-\frac{g}{ROIC}\right)}{WACC-g}$$



| c <sup>o</sup> ← →                                                                   | REP.MC                  | Q 🔢        | r 😑 🛛 REP.M    | C              |          | Q F              | REP.MC 1              | 5.480 -0.2          | 205 -1.30  | 07% EU   | JR         | Worl                             | kspace 1   | ≡ 1                                    | ● ♠ 冨 ? □             | □≯ ≡ .                    | _ & ×             |
|--------------------------------------------------------------------------------------|-------------------------|------------|----------------|----------------|----------|------------------|-----------------------|---------------------|------------|----------|------------|----------------------------------|------------|----------------------------------------|-----------------------|---------------------------|-------------------|
| REP.MC ~ REPSOL SA ~ Spain   BME SPANISH EXCHANGE   Oil & Gas Refining and Marketing |                         |            |                |                |          |                  | 1 <mark>80</mark> EUR | -0.205 -            | 1.307%     | Vol      | 1,067,66   | 8 <b>C</b>                       | AM 95 (    | CCR 50                                 | Update<br>RELATIVE VA | d: 06-Dec-2<br>Aluation M |                   |
| Overview                                                                             | News & Rese             | arch Price | e & Charts Est | timates Finai  | ncials E | SG Events        | Ownership             | Debt &              | Credit     | Peers    | & Valuati  | on De                            | rivatives  | Filings 3                              | 360 Menu              |                           |                   |
|                                                                                      | In Develop              | ed         | E              | EV/Sales       |          |                  |                       |                     |            | PI       | RICE R     | ELATIVE                          | VALUATIO   | ON                                     |                       |                           |                   |
| 97                                                                                   | Europe<br>[100 = best]  |            | EV             | /EBITDA        |          |                  |                       |                     | 2<br>22.   |          |            | *****                            | ·~~~       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                       | and a second second       | 100<br>90         |
| 100                                                                                  | In Spain                |            |                | P/E            |          |                  |                       |                     | 2<br>17.   | ° 1      |            |                                  | ML A       |                                        |                       |                           | 80                |
|                                                                                      |                         |            | Price/Ca       | ash Flow       |          |                  |                       |                     |            | 5        |            | man                              |            |                                        | wayay                 | وللمحاصر                  | 60 DE             |
| 91                                                                                   | 91 In Energy Price/Book |            |                |                |          |                  |                       |                     |            |          | W.M        | 70 MODEL<br>50 50 40<br>40 30 RE |            |                                        |                       |                           |                   |
|                                                                                      | In Oil, Gas             | &          | Dividend Yield |                |          |                  |                       |                     | 7.         | 5        |            |                                  |            |                                        |                       |                           | 30 <b>m</b><br>20 |
| 87                                                                                   | Consumab                |            | Percen         | tile Keys 1-   | 10 11    | -30 31-70        | 71-90                 | 91-100              | 2.         | .5<br>O  |            |                                  |            |                                        |                       |                           | 10<br>0           |
|                                                                                      |                         |            |                |                |          |                  |                       |                     |            | JAN-200  |            | AN-2010                          | JAN-2      | 012 JAN                                | -2014 JAN-201         |                           | Ĵ                 |
|                                                                                      |                         |            |                |                |          |                  |                       |                     |            | 1        | Y 2Y       | 5Y 10                            |            |                                        |                       |                           |                   |
| COMPONENT DE                                                                         | TAILS                   |            | F12M 🗸         | Average $\vee$ | GROWTH   |                  |                       |                     |            |          |            |                                  |            |                                        | Co                    | ompare: A                 | ∕erage ∨          |
|                                                                                      | Global<br>Rank          | REP.MC     | Oil & Gas      | Energy         | Name     |                  |                       | 5 Yr Hist<br>Growth | Last<br>FY | <b>→</b> | This<br>FY | <b>→</b>                         | Next<br>FY | YoY<br>Growth                          | NTM/LTM<br>Growth     | PEG<br>NTM                | LTG<br>Mean       |
| EV/Sales                                                                             | 88                      | 0.7        | 0.5            | 2.5            | REP.MC   | - Earning Per Sh | ia                    | 3.7%                | 1.26       | 16.0%    | 1.47       | -4.7%                            | 1.40       | -16.7%                                 | -3.4%                 | 1.25                      | 0.0%              |
| EV/EBITDA                                                                            | 94                      | 5.0        | 5.1            | 7.4            | Oil & G  | as               |                       | 6.7%                |            | 11.6%    |            | 235.7%                           |            | -9.2%                                  | 37.5%                 | 1.61                      | 33.9%             |
| P/E                                                                                  | 87                      | 11.2       | 10.1           | 11.4           | REP.MC   | - Revenue - €    |                       | -7.7%               | 37,433     | 22.1%    | 45,708     | 4.6%                             | 47,798     | -5.1%                                  | 5.6%                  |                           | -                 |
| Price/Cash Flo                                                                       | v 93                    | 4.7        | 4.9            | 5.8            | Oil & G  | as               |                       | -6.8%               |            | 19.1%    |            | 4.4%                             |            | 10.4%                                  | 5.3%                  |                           | -                 |
| Price/Book                                                                           | 95                      | 0.8        | 1.3            | 1.3            |          |                  |                       |                     |            |          |            |                                  |            |                                        |                       |                           |                   |
| Dividend Yield                                                                       | 91                      | 5.3%       | 4.9%           | 4.2%           |          |                  |                       |                     |            |          |            |                                  |            |                                        |                       |                           |                   |




## RESIDUAL INCOME AND DIVIDEND AND FCFE MODEL VALUATIONS

## Residual Income Model Valuation

- Required return
   on equity
- Book value + PV (residual income)

## Dividend and FCFE Model Valuations

- Required return on equity
- PV (equity cash flows)

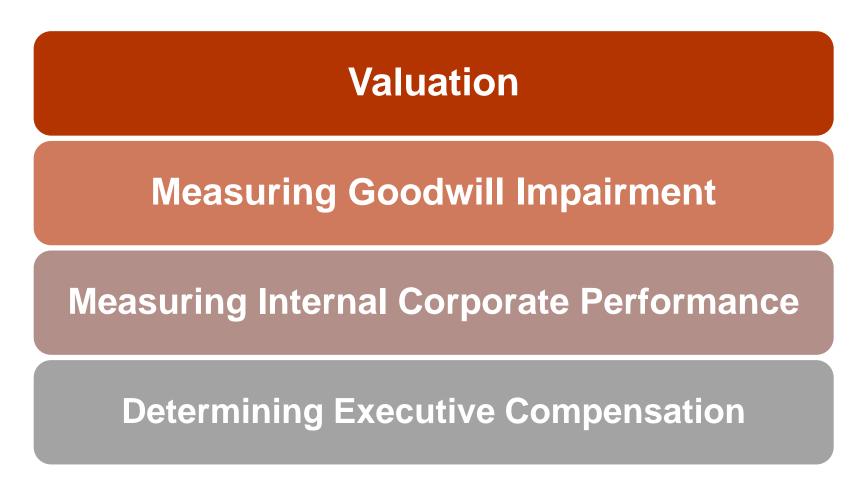


## Strengths

- Puts less weight on the terminal value
- Uses available accounting data
- Is useful for non-dividend-paying firms
- Is useful for firms without free cash flows
- Is useful when cash flows are unpredictable
- Is based on economic value

#### Limitations

- Relies on accounting data
- May require adjustments to accounting data
- Relies on clean surplus relation
- Assumes that Cost of debt = Interest expense


## **Most Appropriate**

- At non-dividend-paying firms
- At firms without free cash flows
- When terminal values are highly uncertain

### Least Appropriate

- When the clean surplus relationship does not hold
- When the determinants of residual income are not predictable

## **Uses of Residual Income**



### Valuing Common Stock using Residual Income

$$V_0 = B_0 + \sum_{t=1}^{+\infty} \frac{RI_t}{(1+r)^t} = B_0 + \sum_{t=1}^{+\infty} \frac{E_t - r \times B_{t-1}}{(1+r)^t}$$

$$\mathrm{RI}_{\mathrm{t}} = \mathrm{E}_{\mathrm{t}} - r \times \mathrm{B}_{\mathrm{t}-1}$$

## **Residual Income Valuation and the P/B**

$$V_0 = B_0 + \frac{ROE - r}{r - g} B_0$$
$$\frac{V_0}{B_0} = 1 + \frac{ROE - r}{r - g}$$

#### Charge for Equity Capital =

Required return on equity × Beginning book value per share

• 10% × \$20.00 = \$2.00

#### Residual Income in Year 1 =

EPS – Charge for equity capital

• \$2.50 - \$2.00 = \$0.50

#### End-of-Year Book Value for Year 1 =

Beginning-of-year book value + Earnings – Dividends

- \$20.00 + \$2.50 \$1.00 = \$21.50
- Beginning book value for year 2

#### Charge for Equity Capital in Year 2 =

Required return on equity × Beginning book value per share

• 10% × \$21.50 = \$2.15

#### Residual Income in Year 2 =

• \$3.00 - \$2.15 = \$0.85

#### Additionally, Assume:

- Residual income in year 3 = \$1.00
- The firm ceases operations in three years

$$V_0 = \$20 + \frac{\$0.50}{1.10^1} + \frac{\$0.85}{1.10^2} + \frac{\$1.00}{1.10^3}$$
$$V_0 = \$20 + \$1.91$$
$$V_0 = \$21.91$$

## **Continuing Residual Income**

= Long-Term Residual Income

## **Potential Scenarios:**

- RI is constant forever
- RI is zero at the terminal period
- RI gradually declines to zero where ROE = r
- RI gradually declines to a constant level where ROE > r

## **Continuing Residual Income and Persistence Factors**

## **High Persistence**

- · Low dividend payout
- Historically high industry ROEs

#### Low Persistence

- Extreme ROE
- Extreme levels of special items
- Extreme accounting accruals

$$V_0 = B_0 + \sum_{t=1}^{T-1} \frac{E_t - r \times B_{t-1}}{(1+r)^t} + \frac{E_t - r \times B_{T-1}}{(1+r-\omega)(1+r)^{T-1}}$$

### Persistence Factor ( $\omega$ )

- $0 \le \omega \le 1$
- $\omega = 1$   $\rightarrow$  Residual income will not fade
- $\omega = 0$   $\rightarrow$  Residual income will not persist after the initial forecast to rise
- $\omega = 0.62 \rightarrow$  It has been observed, on average, empirically

## **Example: Multistage Residual Income Model**

## From the First Valuation Example:

- Beginning book value at time 0 = \$20.00
- Residual income in year 1 = \$0.50
- Residual income in year 2 = \$0.85
- Residual income in year 3 = \$1.00
- Required return on equity = 10 percent
- Value was \$21.91

## Now Assume:

• The firm continues operations after three years

## **Example: Multistage Residual Income Model** – $\omega = 1.0$

$$V_{0} = B_{0} + \sum_{t=1}^{T-1} \frac{E_{t} - r_{E}B_{t-1}}{(1+r_{E})^{t}} + \frac{E_{T} - r_{E}B_{T-1}}{(1+r_{E} - \omega)(1+r_{E})^{T-1}}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(1+0.10-1.0)(1.10^{2})}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(0.10)(1.10^{2})}$$

$$V_{0} = \$29.42$$

## Example: Multistage Model using the P/B

## Calculate the PV of continuing residual income using P/B

• Use this to determine terminal value

## Assume for the previous example

• Book value in year 3 = \$25.00

P/B is projected in year 3 as 1.10

## The projected stock price in year 3:

• \$25 × 1.10 = \$27.50

## EXAMPLE: MULTISTAGE MODEL USING THE P/B

$$V_{0} = B_{0} + \sum_{t=1}^{T} \frac{E_{t} - r_{E}B_{t-1}}{(1 + r_{E})^{t}} + \frac{P_{T} - B_{T}}{(1 + r_{E})^{T}}$$
$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{1.10^{3}} + \frac{\$27.50 - \$25.00}{1.10^{3}}$$
$$V_{0} = \$23.79$$

## Accounting Adjustments for the Residual Income Model

| Example                                                                                                                                                     | Adjustment to Financial Statement                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Over several years, Firm A has<br>consistently <b>recorded losses in its</b><br><b>available-for-sale securities</b>                                        | Adjust net income downward ↓                           |
| Firm B consistently <b>capitalizes</b><br><b>expenditures</b> that should have been<br>expensed                                                             | Adjust net income and book value downward $\downarrow$ |
| Firm C has recorded <b>foreign</b><br><b>currency translation losses</b> on its<br>balance sheet over several years; the<br>losses are expected to continue | Adjust net income downward ↓                           |
| Firm D <b>accelerates revenues</b> to the current period and defers expenses to later periods                                                               | Adjust net income and book value downward $\downarrow$ |



**Recommended Reading:** 

Koller, T.; Goedhart, M.; Wessels, D. (2010), *Valuation: Measuring and Managing the Value of Companies*. 5<sup>th</sup> edition, McKinsey & Company Inc. John Wiley & Sons, Inc.

## Valuing nonoperating assets

#### Excess cash and marketable securities

They can be converted into cash on short notice. Reported at fair market value (IFRS/US GAAP)

Shouldn't value liquid nonoperating assets if market values are available!

## Nonconsolidated subsidiaries and equity investments

Equity stakes between 20% and 50%: historical cost plus reinvested income (equity method)

Equity stakes below 20%: historical cost (may be used fair value AFS/FV)

Exchange rate effects?

Price/EV multiples?

Estimations by analysts?

## Valuing nonoperating assets

#### Loans to other companies

Loans to nonconsolidated subsidiaries and other companies: use the reported book value.

#### Finance subsidiaries

Because financial subsidiaries differ greatly from manufacturing and services, these segments have to be **valued separately** (e.g., PSA, Volkswagen).

#### Discontinued operations

Remove from the **FCF** and adjust **earnings** to exclude gain/losses from these operations.

## Valuing nonoperating assets

#### • Excess real estate

They are no longer required for the firm's operations. Any cash-flow generated by these assets are **excluded from the FCF projection**. These assets shouldn't be valued separately, except if they are expected to be sold in the near term – use book values (conservatism).

#### Tax loss carryforwards

A firm may have DTA and DTL. Only tax loss carry-forwards should be **valued separately**. Create a separate account for the accumulated tax loss carry-forwards and forecast the development of this account.

#### Excess pension assets

See slides "Advanced Valuation Issues - Chp 5. financial analysis and reporting"

## Valuing debt and debt equivalents

## • Debt

If the debt is relatively secure and actively traded (commercial paper, notes payable, fixed and floating bank loans, corporate bonds, and capitalized leases) **use its market value**. If not, **estimate the current value** using YTMs.

If the default risk is low, the book value is a good approximation for **fixed-rate debt**.

Market values of **floating-rate debt** are not sensitive to interest rates if the default risk is fairly stable.

## Highly levered firms

Especially for distressed companies, can be applied an integrated-scenario approach.

The scenario valuation approach treats equity like a **call option** on EV.

## Valuing debt and debt equivalents

## Operating leases

See slide "Advanced Valuation Issues - Chp 5. financial analysis and reporting"

#### Securitized receivables

See slide "Advanced Valuation Issues - Chp 5. financial analysis and reporting"

#### Provisions

See slide "Advanced Valuation Issues - Chp 5. financial analysis and reporting"

### Contingent liabilities

See slide "Advanced Valuation Issues - Chp 5. financial analysis and reporting"

## Valuing hybrid securities and minority interests

Convertible debt and convertible preferred stock

Straight corporate bond + call option on equity

- 1. Market value: if actively traded
- 2.<u>Black-Scholes value:</u> if market value is inappropriate use an option-based valuation
- 3. Conversion value: assumes that al convertible bonds are immediately exchanged for E

## Employee stock options

1. Black-Scholes or advanced binomial models

2. Exercise value approach: all options are exercised immediately – ignores the time value of the options

## Minority interests

Similar to nonconsolidated subsidiaries